
Accepted for publication, ICCAD 2022

Compositional Verification Using a Formal
Component and Interface Specification

Yue Xing∗, Huaixi Lu∗, Aarti Gupta, and Sharad Malik
Princeton University, Princeton, USA

yuex@princeton.edu, huaixil@princeton.edu, aartig@cs.princeton.edu, sharad@princeton.edu

Abstract—Property-based specification such as SystemVerilog
Assertions (SVA) uses mathematical logic to specify the temporal
behavior of RTL designs which can then be formally verified
using model checking algorithms. These properties are specified
for a single component (which may contain other components
in the design hierarchy). Composing design components that
have already been verified requires additional verification since
incorrect communication at their interface may invalidate the
properties that have been checked for the individual components.
This paper focuses on a specification for their interface which
can be checked individually for each component, and which
guarantees that refinement-based properties checked for each
component continue to hold after their composition. We do this in
the setting of the Instruction-level Abstraction (ILA) specification
and verification methodology. The ILA methodology provides a
uniform specification for processors, accelerators and general
modules at the instruction-level, and the automatic generation
of a complete set of correctness properties for checking that the
RTL model is a refinement of the ILA specification. We add
an interface specification to model the inter-ILA communication.
Further, we use our interface specification to generate a set of
interface checking properties that check that the communication
between the RTL components is correct. This provides the
following guarantee: if each RTL component is a refinement of
its ILA specification and the interface checks pass, then the RTL
composition is a refinement of the ILA composition. We have
applied the proposed methodology to six case studies including
parts of large-scale designs such as parts of the FlexASR
and NVDLA machine learning accelerators, demonstrating the
practical applicability of our method.

I. INTRODUCTION

Formal verification of hardware is performed by checking
an implementation (typically an RTL model) against a formal
specification. These specifications are typically provided as a
set of properties in SystemVerilog Assertions (SVA) [1] or
property specification language (PSL) [2]. These properties
use mathematical logic (e.g., linear temporal logic [3]) and
are formally verified on the implementation model using a
model checker [4]. The properties are specified for a single
component in the design (which may contain other compo-
nents in the design hierarchy). In this paper, we focus on
properties of individual components that prove that their RTL
implementations are refinements of high-level specifications –
we refer to these as refinement-based properties.

This work was supported by the Applications Driving Architectures (ADA)
Research Center, a JUMP Center co-sponsored by SRC and DARPA. This
research is also funded in part by NSF award number 1628926, XPS: FULL:
Hardware Software Abstractions: Addressing Specification and Verification
Gaps in Accelerator-Oriented Parallelism, and the DARPA POSH Program
Project: Upscale: Scaling up formal tools for POSH Open Source Hardware.

*These authors contributed equally to this work

Composing components that have already been verified
as correct refinements requires additional verification since
incorrect communication at their interfaces may invalidate the
refinement-based properties already checked for the individual
components. This paper proposes a specification for their in-
terfaces that can be checked individually for each component.
The checks guarantee that the refinement-based properties
checked for each component continue to hold after their
composition. We do this in the setting of the Instruction-level
Abstraction (ILA) specification and verification methodology.

The ILA methodology provides a uniform specification for
processors, accelerators and general modules at the instruction-
level, and the automatic generation of a complete set of
correctness properties for checking that the RTL model is a
refinement of the ILA specification. The ILA is a generaliza-
tion of the instruction set architecture (ISA) of processors.
Huang et al. [5] proposed the ILA for accelerator designs
by modeling the commands on the MMIO (memory-mapped-
input-output) interface of accelerators as instructions which
update the architectural state variables. As with processors,
the architecture state variables are those that are persistent
across instructions. Xing et al. [6] further generalized the ILA
instruction-level modeling to general hardware modules. The
commands received at the inputs to a module are treated as
instructions that update the architecture state variables (i.e.,
variables that are persistent across the commands). The ILA
methodology supports refinement-based verification by auto-
generating per-instruction correctness properties from the ILA
specification for checking the RTL implementation.

So far the ILA methodology has been applied to a single
component, e.g., a RISC-V core or a cache module. When RTL
components verified using this methodology are composed by
connecting their corresponding pins, incorrect communication
between them may invalidate the refinement checks done for
each component, which assumed correct communication. This
requires additional verification of the composed RTL models,
including possibly re-verifying properties for each component
in the composed RTL design. This is undesirable – we would
like the per-component refinement checks to continue to hold
following the composition, i.e., for them to include checks that
the communication is also implemented correctly.

We address this by proposing a compositional specification
and verification methodology using ILA models for individual
components and generating interface checks to ensure correct
communication by each individual component. The goal of
this methodology is to guarantee that if each RTL component
(RTL1, RTL2) is a refinement of its respective ILA specifica-

Accepted for publication, ICCAD 2022

tion (ILA1, ILA2) and the interface checks pass, then the RTL
composition is a refinement of the ILA composition. We refer
to this methodology as ILA-based compositional refinement.

However, there are some challenges in meeting this goal:
• Challenge 1 – Interface specification: The existing ILA

specification focuses on a single component and lacks the
specification of interface behavior.

• Challenge 2 – Compositional refinement checking: The
refinement checking for individual RTL models only
checks the state variables corresponding to the ILA
specification at specific times (e.g., when an instruction
commits), which is inadequate to check the communi-
cation with other components. Unlike processors, where
the architectural state variables are globally visible only
after the commit point, the interface signals for general
modules are visible to other components at all time steps,
i.e., even before instruction completion. Thus, additional
checks are needed before instruction completion.

We address these challenges by first extending the ILA
specification with an interface specification (via valid-ready
handshake signals) for inter-ILA communication. Next, we
generate corresponding interface checks (SVA properties) to
ensure that inter-RTL communication correctly implements
inter-ILA communication. The interface checks contain two
parts: (1) checks for interface signals at the end of instruction,
which become part of refinement checking, and (2) checks for
interface signals before instruction completion (§III-D). Note
that these checks are targeted to verify only the communication
between components. Note also that this approach is different
from the well-known assume-guarantee reasoning [7], which
targets checking that specified guarantees for each component
hold under specified environment assumptions.

As with refinement-checking in the ILA methodology, the
interface specification and interface checking are done per
component on its ILA and RTL models. This leverages design
modularity in the implementation and the specification to
enable modular verification, thereby improving the scalability
of verification. We demonstrate the practical benefits of our
proposed methodology through six case studies.

Overall, this paper makes the following contributions:
• We propose a new methodology leveraging Instruction

Level Abstractions (ILAs) for compositional specification
and verification that enables compositional refinement,
i.e., if individual RTL implementations are refinements of
their corresponding ILAs and their interface checks pass,
then their composition is a refinement of the composition
of their individual ILAs.

• To verify the interactions between components in the
implementation, we include an interface specification
(via valid-ready handshake signals) in the ILA models
(§III) and perform additional interface checks (§III). This
provides the basis for compositional refinement checking.

• We have implemented our compositional modeling and
verification methodology and demonstrated its effective-
ness through six different case studies (§IV). These
case studies are parts of real designs: an 8051 micro-
processor [8], a secure SoC comprising an 8051 and

an AES accelerator [9], FlexASR Processing Element
(PE) [10], NVDLA convolution core [11], an off-chip
communication protocol used in BaseJump STL [12], and
AMBA AXI on-chip communication modules [13]. For
several of these case studies our method found bugs in the
RTL implementation that were confirmed by designers.

II. BACKGROUND: ILA MODELS

A. ILA Specification
The Instruction Level Abstraction (ILA) is a generalization

of the Instruction Set Architecture (ISA), which serves as a
specification for processors. An ISA specifies:

• the architectural state variables for a processor, i.e., the
state variables that persist between instructions

• the decode condition for each instruction
• the architectural state update for each instruction.

There have been several successful efforts in processor verifi-
cation that check an implementation instruction-by-instruction
against a formal ISA specification [14]–[16].

The ILA specification [5] was introduced to extend the
notion of an ISA to accelerators. It does so by treating the
commands at the interface of the accelerator as “instructions.”
The ILA specification and ILA-based verification methodol-
ogy were further extended for specification and verification
of general hardware modules [6]. In this paper, we further
leverage this notion of treating commands at the interface
of a general hardware module as instructions to also model
component interactions.

As introduced in [5], an ILA model of a component is rep-
resented as a five-element tuple: ⟨S,W, S0, D,N⟩, where S,
W denote the vectors of state and input variables, respectively,
and S0 is a vector of initial values of the state variables. The
set of instructions J is associated with the sets D and N .
D is a set of decode functions (each specifies a condition
for triggering an instruction, i.e., the interface command), and
N is a set of next state functions (each describing the state
update performed by an instruction) for each instruction j ∈ J ,
respectively. Formally, an ILA model A is defined as follows:

A = ⟨S,W, S0, D,N⟩, where
S is a vector of state variables (state space: S)
W is a vector of inputs variables (input space: W)

S0 is a vector of initial values of the state variables
D = {Dj : (S×W) → B, j ∈ J} is a set of decode

functions, B = {0, 1}
N = {Nj : (S×W) → S, j ∈ J} is a set of next

state functions

Note that this ILA definition focused on a single module
specification. It did not consider any specification for commu-
nicating with other modules. Filling this gap via an interface
specification is one of the contributions of this paper (§III).

B. ILA-based Refinement Verification
For performing a refinement check, the ILA methodology

automatically generates a set of verification properties – one
per instruction – by using a user-provided refinement map.

Accepted for publication, ICCAD 2022

Essentially, the refinement map specifies what to check and
when to check for equivalence of corresponding states, since
the ILA and RTL models are at different levels of abstraction
and one step at the ILA level may correspond to multiple steps
at the RTL. Intuitively, each property (called a commutating
diagram correctness property [15]) checks that when the ILA
specification and the RTL implementation start in equivalent
corresponding states (as specified in a refinement map) at
the start of an instruction, then after the instruction finishes
execution (as specified in a refinement map), the resulting
corresponding states are also equivalent. Refinement maps can
also handle checking the correctness of a pipelined hardware
implementation against a sequential ISA/ILA [5], [15], [16].
The per-instruction properties that are generated by ILA-based
refinement verification can be checked using standard open-
source [17] or commercial model checking tools [18]. In the
rest of this paper, we will use notation RTLi◁ILAi to indicate
that RTLi is a refinement of ILAi.

It is worth emphasizing that other existing methodologies or
tools do not provide automated generation of a complete set of
properties for refinement checking for hardware modules other
than processors. Thus, the ILA component specifications are
very valuable for this purpose and enable leveraging standard
model checkers for verification of processors, as well as
accelerators and general modules.

III. COMPOSITIONAL VERIFICATION

This section describes our proposed ILA-based composi-
tional verification methodology. It starts with a motivating ex-
ample which demonstrates the challenge with reasoning about
composed designs, followed by an overview of the existing
ILA modeling and verification of individual components for
that example. Then, we introduce the interface specification
which we add to the existing ILA specification, and show how
it captures synchronous communication between ILA mod-
els. Finally, we introduce additional per-component interface
checks based on this interface specification. Their combination
with the existing refinement checks guarantees compositional
refinement, which establishes correctness of the composition
of RTL modules.
A. Motivating Example

We start with a motivating example of the BaseJump offchip
protocol design [12]. This protocol has two components:
an upstream controller module (which is in the Upstream
chip) and a downstream controller module (which is in the
Downstream chip) as shown in Figure 1. The data commu-
nication is uni-directional from Upstream to Downstream.
A 64-bit data unit is input into the upstream module and
transferred from the upstream module to the downstream mod-
ule. The transfer between Upstream and Downstream is
limited to 8-bit units at a time. Accordingly, the 64-bit data in
in Upstream is transferred in four steps to Downstream
via the 8-bit channels data o 0 and data o 1, and then sent
out as 64-bit data out by Downstream. The design uses a
token-based protocol to coordinate the two modules for no loss
of data. A manually-provided property-based specification or
an automated ILA approach [5] (which we use) can be used
to provide the formal properties to be verified for the design.

downstream
module

upstream
module

data_o_0 (8b)

data_in (64b) data_out (64b)data_o_1 (8b)

token (1b)

Monitor (#req, #ack)

Fig. 1: BaseJump Off-chip Protocol Design (Black for design;
Blue for monitor used by the verification)

TABLE I: Time/Memory Usage of the Verification the Off-
chip Protocol as a Single Component

Verification Task Design Size Time Memory

Property (1)
7478 LoC /

3187 state bits
bounded proof

399 steps in 24 h 682 MB

Here is an example property expressed in SVA:

assert{#req >= #ack} (1)

In this property, the signals req and ack are two monitor
signals where req is set to high when there is some data
x input to the upstream module, while ack is set to high
when the same data x is output from the downstream module.
Therefore, Property 1 checks that the number of data output
from downstream module should not exceed the number of
data input into the upstream module. Table I shows the time
and memory usage of checking this property using JasperGold,
a commercial model checker [18]. (Any model checker may
be used for this purpose.) Given a time limit of 24 hours, the
property cannot be fully proved, i.e., the model checker fails
to provide an unbounded proof. However, the bounded model
checking (BMC) engine provides a bounded proof with no
bug up to 399 cycles. Note that directly checking the upstream
and downstream control modules together poses a scalability
challenge to a state-of-the-art model checker. As we will
show later, a compositional verification of the upstream and
downstream control modules using the proposed ILA-based
methodology exploits design modularity during verification,
and thereby helps improve scalability.

B. ILA Modeling and Verification of Individual Components
The first step of our approach is to leverage the existing ILA

modeling and verification techniques [6] for individual compo-
nents. The ILA models for individual RTL modules of Base-
Jump are shown in Figure 2. These models are instruction-
level specifications for the individual RTL modules. Each
module has the DATA IN and DATA SEND instruction to
indicate when the data comes in and goes out, respectively. The
TOKEN, as introduced in § III-A, is included in the upstream
and downstream ILA models (TOKEN SEND instruction in
the downstream module, and TOKEN IN instruction in the
upstream module).

With the per-module ILA model as a specification, the ILA-
based verification methods (§II-B) can be applied to verify
each RTL module, i.e., that each RTL module refines the
corresponding ILA model. However, since the per-module
ILA does not specify any interface for communicating with
other ILAs, the two ILAs for the upstream and downstream
modules by themselves do not provide a complete specification

Accepted for publication, ICCAD 2022

Fig. 2: Instructions and Interface Signals for the Off-
chip Communication Protocol. i:DATA IN, i:DATA SEND,
i:TOKEN IN, i:TOKEN SEND are the instructions. Data in
(64), valid in (1) etc. are the interface signals with the bit
width inside the parenthesis

Fig. 3: ILA Interface Specification: Handshake Signals and
Interface Instructions

for the whole RTL design which is a composition of the
two modules. It is this gap that we fill through the ILA
interface specification. This interface specification enables
composing the two individual module specifications to provide
a specification for the composed design.

C. Compositional Refinement using ILA Models
1) Augmenting the ILA model with the Interface Specifi-

cation: To support the composition of ILA models, we first
define outputs in ILA models. This allows connecting the
outputs an ILA model to the inputs of another ILA model to
enable their communication. Then, we consider the interface
between two models, as defined by their inputs and outputs.

In our study of designs ranging from HLS-generated de-
signs [19] to manually implemented RTL designs [12], we
noted that most modules use simple handshake signals for
correct communication. Motivated by this observation, we
specify an interface between two modules in terms of two
handshake signals – valid and ready – in the outputs/inputs
of ILA models, as shown in Fig. 3 (i). Note that these signals
may be implemented in different ways (e.g., ready signals may
always be high in some design, or may only be high when
valid is low in other designs.) – for now we focus on the
specification of this classic handshake mechanism. Further, an
ILA model may have many channels in its interface, where
we consider a channel as connecting the output of one ILA
to the input of another ILA. We model each channel using a
separate pair of valid/ready handshake signals.

Intuitively, a valid signal indicates that the output of an
ILA model is valid, while a ready signal indicates that an
ILA model is ready to read its input. The data transferred
through the channel is referred to as the payload and we
require that the payload can be transferred only when both
the valid and ready signals for the channel are high (i.e.,
active). When there are multiple channels for transferring data
(e.g., multiple valid/ready or one valid/multi-ready or multi-
valid/one ready), the specification (ILA) must decide how to
resolve this through its instructions’ decode and state update
functions. For example, if there is one valid and multiple ready
signals, the ILA specification must decide whether to wait for
all ready signals or only one of them to be high, by using a
suitable decode condition of the handshake signal that requires
all or one ready signals to be high, respectively.

More formally, we define the augmented ILA model A as:

A = ⟨S,W,O, S0, D,N⟩, where
S is a vector of state variables (state space: S)
W is a vector of input variables (including valid/ready,

input space: W)

O is a vector of output variables (including valid/ready,
output space: O, O ⊆ S

S0 is a vector of initial values of the state variables,
D = {Dj : (S×W) → B, j ∈ J} is a set of decode

functions, B = {0, 1}
N = {Nj : (S×W) → S, j ∈ J} is a set of next

state functions

2) Interface Specification using Handshake Signals: Con-
ceptually (although implementations vary), a valid signal is
set to high when a module is prepared to send the payload to
another module; a ready signal is set to high when a module
is prepared to receive the payload from another module. A
payload is transferred from one module to another only when
valid and ready are both set to high in the respective modules.

We model the interface specification using such handshake
signals in the ILA specification of a component. Note that in
this setting, the payload received by an ILA is an instruction
for that ILA with associated data values. An example ILA
component that includes four handshake signals is shown in
Fig. 3(i), where valid o and ready o are outputs of this
component, say P , and valid i and ready i are inputs from
another component, say Q. P and Q are communicating with
each other based on these handshake signals. Here we focus
on the handshake signals and omit the payload associated with
the handshake. In this example, we assume that module Q has
the same specification as model P .

In Fig. 3 (ii), we show an example interface specification for
the handshake signals in ILA component P , i.e., how valid o
and ready o (the output variables labeled in each state) are
updated by P depending on its current state and its inputs
valid i and ready i. In the state “wait,” P is ready to receive
a new instruction. If P sees a valid input (valid i) from
component Q (i.e., a possible new instruction at its interface),
then it will decode and execute the instruction, and transition to

Accepted for publication, ICCAD 2022

the state “done.” In the “done” state, P ’s valid output (valid o)
is high while its ready output (ready o) is low, indicating that
P can send results (from its recently executed instruction) to
Q, but it is not yet ready to receive a new instruction from Q
in this example. P will wait in this state (self-loop) as long
as Q is not ready. When Q indicates that it is ready (and
receives the payload from P), then P can transition back to
its “wait” state where it is ready to receive a new instruction.
Note that in this specification, an instruction is executed by P
along its transition from “wait” to “done,” while an instruction
is executed by Q along P ’s transition from “done” to “wait.”
Next, we discuss how these instructions are modeled along
with the interface specification.

3) Instructions with Handshake Operations: We now de-
scribe how the interface specification is modeled in the form
of instructions with handshake operations in the ILA models.
In particular, Fig. 3 (iii) shows the ILA specification (including
the interface) for a module P (the same as for module Q). For
ease of discussion, we focus only on the handshake signals in
module P ; other outputs in the interface simply carry the pay-
load but are not involved in synchronizing the communication.
Based on the handshake signals, we define two instructions in
the ILA model – the first has a “receive” operation (corre-
sponds to the transition from state “wait” to state ”done”),
and the other has a “send” operation (corresponds to the
transition from state “done” to state “wait”). Note that these
two instructions only have handshake operations for now, and
no other computation (via other state updates). We will extend
this later to include such computation.

With these two instructions, an ILA model P can correctly
communicate with an ILA model Q when their respective
instructions with “send” and “receive” operations are synchro-
nized, i.e., if the second instruction with “send” is decoded in
the sender P ’s ILA model, the first instruction with “receive”
is decoded in the receiver Q’s ILA model at the same time.
This synchronicity condition guarantees that the payload is
correctly transferred from ILA model P to ILA model Q.

We would like to emphasize that although this handshake
specification resembles a standard handshake between asyn-
chronous concurrent processes, i.e., processes that may not
operate synchronously, our goal here is to adapt it for spec-
ification of synchronous components that are implemented
in RTL. Thus, it is important to identify and specify the
synchronicity condition that ensures correct communication
between RTL modules in the implementation.

More generally, we include the handshake operations “send”
and “receive” as part of other instructions in an ILA model.
For the instructions with “receive” operation, the decode
function includes the condition that valid i ∧ ready o, and
for the instructions with “send” operation, the decode function
includes the condition that valid o ∧ ready i. The decode
function can also include other information such as input or
state variables to trigger different state update functions for
other state variables. The synchronicity condition ensures that
whenever two ILA models communicate there is an instruction
with a “send” operation decoded in the sender ILA model
and an instruction with a “receive” operation decoded in the
receiver ILA model.

Our strategy for specifying a component interface in terms
of handshake operations is designed such they can be easily
added to instructions in the ILA model for each component.
Thus, the augmented ILA model specifies how the interface
handshake signals are updated by instructions with handshake
operations, in addition to specifying architectural state variable
updates performed by instructions as with the original ILA
model. Effectively, the augmented ILA model also ensures
that each component executes a new instruction only when
the interface handshake signals have specific values, e.g., some
new instruction can be received and executed by a component
only after its previous instruction with send operation has been
received by the other component(s). Note that by considering
the handshake signals as inputs and outputs at the interface
of a component, the overall problem of specifying communi-
cation between components in a system is decomposed into
a modular interface specification for each component. This
is critical in enabling modular per-component verification,
thereby improving verification scalability.

4) ILA Composition: In the setting of this paper, we view
an ILA model as a Moore FSM where O ⊆ S. Thus, a
composition of ILA models is a standard composition be-
tween interacting FSMs, where an output of one FSM can
be connected to an input of another FSM. More formally,
consider two ILA models A1 = ⟨S1,W1, O1, S10, D1, N1⟩
and A2 = ⟨S2,W2, O2, S20, D2, N2⟩. The parallel com-
position C of A1 and A2, is an FSM C : A1 ∥ A2 =
⟨SC ,WC , OC , SC0, δC⟩, defined as follows:

SC = S1× S2

WC = W1 ∪W2 \ ((W1 ∩O2) ∪ (W2 ∩O1))

OC = O1 ∪O2 \ ((W1 ∩O2) ∪ (W2 ∩O1))

SC0 = S10 × S20

δC : (SC ×WC) → SC is the state transition function.
δC((S1,W1), (S2,W2)) = (S1′, S2′),where

S1′ =

{
N1j(S1,W1) if ∃j.D1j(S1,W1) = 1

S1 otherwise

S2′ =

{
N2k(S2,W2) if ∃k.D2k(S2,W2) = 1

S2 otherwise.

Since the set of output variables is a subset of the state
variables, the output functions are represented by the cor-
responding state transition functions (which are dependent
only on state variables in Moore FSMs). Each state of the
composition C is a pair comprising the states of A1 and A2
in the usual way. The state transition function δC updates each
part of this pair if there exists an associated instruction (j for
A1, k for A2) whose decode condition is true. Thus, each
transition in C corresponds to the execution of an instruction
in one or both components.

This definition generalizes in a straightforward manner to
a composition of n ILA models. An FSM for C : A0 ∥
A1 ∥ . . . ∥ An−1 can be constructed where the state of the
composition is a vector comprising the states of A0, A1, ...,
An−1. A payload transfer between any pair of ILA occurs
when a send instruction in one component and a receive

Accepted for publication, ICCAD 2022

instruction in the other are synchronized in the composition.
D. Compositional Refinement with Interface Checking

Recall that when RTLi ◁ ILAi, the RTL component RTLi

and its ILA specification ILAi are shown to have equivalent
outputs at corresponding points specified in a given refinement
map (§II-B) which is provided by the user. Note that the aug-
mented ILA models presented in this paper include interface
instructions that specify the updates to the handshake signals
according to the interface specifications. We then use the
standard ILA-based refinement verification methodology [6] to
perform the component refinement checks, which now include
checking the handshake signals at the end of each instruction.
This forms the first part of interface checking.

Note that checking RTLi ◁ ILAi focuses on checking the
equivalence of specified outputs at the end of each instruction
(as specified in the refinement map). However, refinement
checking at instruction completion points is not enough for the
interface signals. Unlike processors and accelerators, where the
architectural state is visible only at the end of an instruction,
the handshake signals at the interface are visible at all time
steps, i.e., even before instruction completion. Therefore, we
also need to ensure that the interface signals have correct
values even before the instruction completion points. Specifi-
cally, we perform the following two additional pre-completion
checks (PCCs):

• PCC1: For each RTLi, the valid output is not set to
high before the completion of the instruction that asserts
the valid signal. This ensures that the payload is not
transferred before it is available.

• PCC2: For each RTLi, the ready output is not set to
high before the completion of the instruction that asserts
the ready signal. This ensures that the module is actually
ready to receive the payload.

These two checks form the second part of interface checking
and ensure that the payload is correctly transferred as per
the ILA interface specification. Note that this focuses on
communication only, and is different from standard assume-
guarantee reasoning [7] which focuses on verifying the guar-
antees under environment assumptions for each module. As we
show later §IV, the bugs that we find with these two checks
can help strengthen environment assumptions in some designs.

Theorem 1 [Compositional Refinement]: If for all compo-
nents i, the refinement checks and the additional PCC checks
on RTLi and ILAi pass, then the composition RTLC :
RTL0 ∥ RTL1 ∥ RTL2 . . . ∥ RTLn−1 is a refinement of the
composition ILAC : ILA0 ∥ ILA1 ∥ ILA2 . . . ∥ ILAn−1.

Proof Sketch: Consider a pair of interacting modules RTLi

and RTLj , and their specifications ILAi and ILAj , respec-
tively. Since RTLi ◁ ILAi and RTLj ◁ ILAj , this ensures
that the payload values match between RTLi and ILAi and
also between RTLj and ILAj . Furthermore, the handshake
signals in the two models match at the end of each instruction,
and the additional PCCs ensure that the handshake signals
are correctly implemented at all steps before the end of each
instruction. Thus, the payloads between RTLi and RTLj

match the payloads between ILAi and ILAj , and their

transfers between RTLi and RTLj are implemented correctly.
Therefore, the composition of RTLi and RTLj refines the
composition of ILAi and ILAj . This reasoning can be applied
pairwise to n components, thereby proving the claim.

IV. CASE STUDIES
There are no tools/techniques that directly address our

problem space - the specification and verification of refinement
checking properties of the composition of hardware compo-
nents. Thus, in the absence of a head-to-head comparison
with other tools/techniques, we demonstrate the applicability
and effectiveness of our proposed ILA-based composition
methodology through six case studies: the BaseJump off-
chip communication design [12], an AXI communication de-
sign [13], an 8051 microprocessor as a composition of its sub-
modules [8], a secure SoC [9] (composition of 8051 and an
AES accelerator), the Processing Element in the speech recog-
nition accelerator FlexASR [10] and the convolution core in
the Nvidia Deep Learning Accelerator (NVDLA) [11]. *

We successfully verified all six case studies and detected
some bugs that were confirmed by the designers. The open-
source ILAng platform [20] was used for ILA tools and
JasperGold [18] was used as the model checker. All exper-
iments were performed on a Dell Server with a 2.3 GHz 28-
core Intel Haswell processor and 224 GB of RAM, running
RedHat Linux 5 OS. The experimental results for verification,
including the RCs and PCCs are provided in Table II.
A. BaseJump Off-chip Link

We built the ILA models with the augmented outputs and
interface signals for the upstream and downstream modules in
the BaseJump [12] off-chip link design (§ III-A). During pre-
completion checking one bug was identified in the upstream
module. The implementation incorrectly transferred invalid
data, which is not allowed in the specification. The bug
was found within 0.3s. After checking with the designers,
we found that the cause was a missing requirement on the
external inputs. We fixed this bug by adding environmental
constraints on those inputs after which verification for all
modules completed successfully in 15 min. In comparison with
user-specified property-based verification for the composed
RTL design which did not complete in 24 hours (§ III-A),
the ILA compositional verification methodology decomposed
the original verification problem into two separate refinement
checking problems. These proof obligations were finished
in reasonable time, demonstrating the verification scalability
enabled by the modularity of this methodology.
B. AXI Design

The widely-used on-chip AXI communication protocol [13]
is a burst-based data-transfer protocol where the communica-
tion channels use a valid-ready handshake mechanism. Data
can be transferred from a leader module to a follower module
only when ready and valid signals are both asserted in one
channel as required by the handshake mechanism.

We built four augmented ILA models: one each for reading
and writing channels in each of the leader and follower

*Source code for all models and verification properties is available at
https://github.com/anonymized-compositional-verification

Accepted for publication, ICCAD 2022

TABLE II: Experimental Results for Case Studies: Statistics of RTL Designs (Lines of Code in Verilog, Number of State Bits),
ILA Models (Number of Instructions, Lines of Code in C++ using ILAng, Number of State Bits), Refinement Maps (Lines of
Code in Json using ILAng) and Verification Time/Memory

Case Study Design Statistics ILA Model Statistics Verification

Modules
RTL Size

(LoC)
of

state bits
of
instrs

ILA size
(LoC)

of
state bits

Ref-Map
(LoC)

Bug Found
Time (s)

Proof
Time (s)

Memory
Usage (MB)

Off-chip
Protocol

Upstream 2982 713 7 144 146 286 0.3 756.6 253.5
Downstream 5453 2474 6 101 98 196 - 38.2 89.1

AXI OH
Design

Leader 871 403 11 184 289 109 0.01 0.23 9.7
Follower 828 372 9 167 159 77 0.01 0.11 7.8

8051
Micro-

processor

Decoder 2636 30 5 479 30 63 - 0.23 19.5
Datapath 2987 273 20 861 229 142 - 11.9 667

Mem Interface 1096 304 12 342 220 101 - 0.79 45
Secure
SoC

micr-processor 5938 645 255 723 274 716 - 2749.2 297
AES 1217 1728 16 520 575 232 - 97.4 235

PE Module
in FlexASR

PE Core 39098 9270 12 1203 1269 256 4.1 2716.4 344.1
Activation Unit 15885 9025 20 1394 775 250 - 2284.9 587.7

Convolution
Core

in NVDLA

SC 101846 60874 12 385 41 139 - 109.5 63.41
MAC 54602 72927 6 228 1609 365 - 2601 968
ACC 22450 67032 22 443 767 442 - 362 170.1

modules. We then composed the ILA models and used the
ILA tool to do RC and PCC between each ILA model and
its corresponding RTL component. We found two bugs in the
follower and one bug in the leader components through the
RC. The ILA specification of each module requires that the
interface data be unchanged until the receiver is ready, but
the design fails to implement this feature in both the leader
and the follower. Another bug in the follower read channel is
that the data address should be updated based on an internal
state variable instead of an input variable. These bugs were
found very quickly, in about 0.01s. We confirmed the bug
with the designer and fixed the bugs by keeping the interface
data unchanged until the receiver is ready and correcting the
address computation logic. After fixing the bugs, the follower
and leader modules were verified in 1s.
C. 8051 Microprocessor

We also applied our methodology to an open-source 8051
microprocessor [8]. It comprises three modules: a decoder,
a datapath and a memory interface. The memory interface
communicates with the external instruction/data memory and
holds the program counter. It also communicates with the
decoder for sending the instruction and receiving the branch
address for the program counter. The decoder receives the
instruction, decodes it and communicates with the datapath
which contains the registers for computation. We built an ILA
model for each of the three modules and applied RC and PCC.
The verification for these three modules finishes in 0.23s, 11.9s
and 0.79s, respectively.
D. Secure SoC

The secure SoC design [9] includes two parts: an 8051
microprocessor and an AES encryption accelerator. The pro-
cessor communicates with the accelerator through an MMIO
interface with a valid/ack handshake mechanism. It can con-
figure the accelerator, trigger a task on the accelerator, and
poll it for completion. Earlier work [5], [9] has developed the
ILA models (without an interface specification) for the two
components. We extended these two models with outputs for

MMIO interaction and the interface handshake mechanism.
We did RC and PCC for the two components and in total the
verification completed in less than an hour.
E. Processing Elements in FlexASR

FlexASR [10] is an accelerator targeting speech and nat-
ural language processing (NLP) tasks that supports various
recurrent neural networks. As shown in Fig. 4a, a Processing
Element (PE) in FlexASR mainly comprises three modules:
a Ready Valid Addressing (RVA) wrapper, a PE core, and
an activation unit. We abstract the RVA wrapper, since it is
very simple and diverts MMIO commands to other modules.
The PE core receives input weights through the input port
from Global Buffer (GB), while the activation unit performs
vector operations on the accumulated results, outputting the
final results back to the GB. We found a bug when performing
RC on the PE core module. The internal state in the PE
core was incorrectly updated from OUT state to IDLE state,
instead of to PRE state, when there is no output. On checking
with the designer, we found that it was caused by an unsafe
optimization during the high-level synthesis of this design.
Besides detecting this bug, we verified all the modules in the
PE within 90 minutes.
F. Convolution Core in NVDLA

NVDLA [11] is an open-source configurable hardware
accelerator targeting inference operations in deep learning
applications. In this case study, we focus on the convolution
core of NVDLA which comprises a sequencer controller (SC),
a multiply-accumulate array (MAC), and a separate accumu-
lator (ACC), as shown in Fig 4b. The CSB inputs are MMIO
commands, which configure the modules’ functionality (e.g.,
interpret data as 8-bit or 16-bit integers). These three modules
are cascaded: the SC module receives inputs from outside (e.g.
a buffer) and outputs the weight and data to the MAC module;
the MAC sends its calculated results to the ACC module; the
ACC module accumulates these values and outputs the final
result to other modules outside the convolution core. The ACC
module also gives the credit to the SC module to indicate

Accepted for publication, ICCAD 2022

Fig. 4: The modules in the FlexASR and NVDLA accelerators

whether the SC module can receive more values from outside.
We built ILA models for each module, modeling complex
arithmetic functions such as multiplication as uninterpreted
functions. Verification (RC and PCC) of these three modules
finished in less than 1 hour.

V. RELATED WORK

Our work is broadly related to efforts in hardware specifi-
cation, interface specification, compositional verification, and
protocol verification.

a) Hardware Specifications: SystemVerilog assertion
(SVA) [1], property specification language (PSL) [2] and
instruction-level abstraction (ILA) [5] provide formal hardware
specifications which can be used for verification. These have
been reviewed earlier (§I).

In addition to the above, there are other high-level hardware
specifications used in practice. SystemC [21] extends C++
for system-level functional models, and Transaction Level
Modeling (TLM) [22] further abstracts the communication and
computation for modeling hardware designs. These models
help raise the level of abstraction and hence improve scal-
ability in software/hardware co-design/simulation. However,
formal hardware verification with SystemC/TLM specifica-
tions remains challenging because of the gap between the
C++ language-based semantics and RTL register-transition-
based semantics. Our proposed approach leverages the ILA
model that captures architecture states and their updates using
instructions – this enables application of well-known processor
verification techniques for RTL refinement checking.

BlueSpec Verilog (BSV) [23] is a rule-based language for
hardware design specification and implementation. A design is
specified by guarded rules, where each rule is an atomic state-
transition unit. BlueSpec relies on a scheduling algorithm to
schedule multiple enabled rules. There is also prior work in us-
ing BlueSpec in compositional reasoning techniques [24]–[26].
They use a verified specification to replace a detailed compo-
nent implementation (e.g., replacing a pipelined processor by
an ISA) in the verification of a design composed of many
components. However, due to the atomicity of rules, there is
no mechanism to specify synchronous behavior (synchronicity
of rules) between interacting BSV components. In contrast, our

method extends the ILA with an interface specification, where
a handshaking mechanism naturally provides a synchronous
semantics for specification of component interactions.

b) Interface Specifications: The Wire Sorts
language [27] also leverages interface specifications for
compositional reasoning for RTL designs. However, its
focus is mainly on checking types of connectivity between
modules, e.g., combinational loops, and not on functional
correctness. In contrast, our work formally verifies component
implementations and their composition via RC and PCC.

There are earlier efforts on specification of interfaces [28],
[29], such as interface automata. They provide formal models
for interface behaviors and theories for the composition of
interface models such that these models are compatible and the
composition is sound. However, these models only focus on
interface behavior and the internal functionality of modules is
abstracted away. In contrast, our approach includes functional
verification of the RTL components and their composition
through RC and PCC.

c) Compositional Verification: Compositional reason-
ing [30], [31] has also been applied to the verification of hard-
ware implementations such as processor RTL designs [32].
These are similar to our approach in that they decompose the
verification into sub-tasks of verifying “units of work” (the
unit is similar to the component in our paper, e.g., speculative
branching unit, ALU, reservation station, etc.), where each
sub-task is more tractable for a model checker. However, their
verification technique is based on assumptions/guarantees or
mutual induction, which have to be defined by a designer
for interacting units/tasks. In contrast, our focus is mainly
on communication and synchronization of the composition
of modules, which requires a user to provide a refinement
mapping. We do not depend on assume-guarantee reasoning.

d) Protocol Verification: Protocol specification and ver-
ification have also been studied before. The CMP (Chou-
Mannava-Park) method [33]–[35] uses flow-based models for
protocol designs, e.g., cache coherence protocols. It addresses
scalability by using parameterized model checking, which ab-
stracts a parameterized number of components (cache blocks)
into a fixed and small number of components. However, these
works focus on correctness of high-level protocol specification,
and not on RTL implementation. Our work (with the case stud-
ies of Off-chip Protocol and AXI) fills this implementation-
verification gap using our proposed methodology.

VI. CONCLUSIONS

In this paper, we propose an ILA-based compositional
specification and verification methodology that supports com-
positional refinement. We extend the ILA model with an
interface specification to model synchronous communication
between ILA models. In addition to component refinement
checks, we propose additional interface checks to guarantee
compositional refinement, i.e., if individual RTL implementa-
tions are refinements of their corresponding ILA specification
models and the interface checks pass, then their composition
is a refinement of the composition of the ILA models. We
have applied our proposed methodology to six case studies, all
from real designs, and found bugs and/or completed refinement

Accepted for publication, ICCAD 2022

checking and interface checking – demonstrating the practical
applicability of our method.

REFERENCES

[1] E. Cerny, S. Dudani, J. Havlicek, and D. Korchemny, SVA: The power
of assertions in SystemVerilog. Springer International Publishing, 2015.

[2] IEEE-Commission, “IEEE standard for Property Specification Language
(PSL),” IEEE Std 1850-2005, 2005.

[3] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). ieee, 1977, pp. 46–57.

[4] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith,
Model checking. MIT press, 2018.

[5] B.-Y. Huang, H. Zhang, P. Subramanyan, Y. Vizel, A. Gupta, and
S. Malik, “Instruction-Level Abstraction (ILA): A Uniform Specification
for System-on-Chip (SoC) Verification,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 24, no. 1, pp. 1–24,
2018.

[6] Y. Xing, H. Lu, A. Gupta, and S. Malik, “Leveraging processor modeling
and verification for general hardware modules,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2021.

[7] A. Pnueli, “In transition from global to modular temporal reasoning
about programs,” in Logics and models of concurrent systems. Springer,
1985, pp. 123–144.

[8] S. Teran and S. Jaka, “8051 micro controller,” 2016, [Online]. Available:
http://opencores.org/project,8051, accessed on: 2022-04.

[9] P. Subramanyan, Y. Vizel, S. Ray, and S. Malik, “Template-based syn-
thesis of instruction-level abstractions for SoC verification,” in Formal
Methods in Computer-Aided Design (FMCAD). IEEE, 2015, pp. 160–
167.

[10] T. Tambe, E.-Y. Yang, G. G. Ko, Y. Chai, C. Hooper, M. Donato,
P. N. Whatmough, A. M. Rush, D. Brooks, and G.-Y. Wei, “A 25mm2

SOC for IOT devices with 18ms noise-robust speech-to-text latency via
Bayesian speech denoising and attention-based sequence-to-sequence
DNN speech recognition in 16nm FinFET,” in 2021 IEEE International
Solid-State Circuits Conference (ISSCC), vol. 64. IEEE, 2021, pp.
158–160.

[11] NVIDIA, “NVIDIA Deep Learning Accelerator,” 2018, [Online]. Avail-
able:www.nvdla.org, accessed on: 2022-04.

[12] M. B. Taylor, “INVITED: BaseJump STL: SystemVerilog Needs a
Standard Template Library for Hardware Design,” in DAC, 2018, pp.
1–6.

[13] A. Olofsson, R. Trogan, F. Huettig, O. Jeppsson, and
P. Saunderson, “Epiphany eLink AXI,” 2016, [Online].
Available:https://github.com/aolofsson/oh/tree/master/axi, accessed
on: 2022-04.

[14] P. Manolios and S. Srinivasan, “A refinement-based compositional
reasoning framework for pipelined machine verification,” TVLSI, vol. 16,
pp. 353 – 364, 05 2008.

[15] J. R. Burch and D. L. Dill, “Automatic verification of pipelined micro-
processor control,” in CAV, 1994.

[16] P. Manolios and S. K. Srinivasan, “A complete compositional reasoning
framework for the efficient verification of pipelined machines,” in
ICCAD, 2005.

[17] C. Mattarei, M. Mann, C. Barrett, R. G. Daly, D. Huff, and P. Hanrahan,
“CoSA: Integrated verification for agile hardware design,” in FMCAD,
2018, pp. 1–5.

[18] Cadence Design Systems, Inc., “JasperGold: Formal Property
Verification App.” 2018, [Online]. Available:http://www.jasper-
da.com/products/jaspergold-apps/, accessed on: 2022-04.

[19] Xilinx, “Vivado Design Suite User Guide,” 2021, [Online].
Available:https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-
synthesis, accessed on: 2022-04.

[20] B. Y. Huang, H. Zhang, A. Gupta, and S. Malik, “ILAng: A modeling
and verification platform for socs using instruction-level abstractions,”
in 25th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems conference series, TACAS 2019
held as part of the 22nd European Joint Conferences on Theory and
Practice of Software, ETAPS 2019. Springer Verlag, 2019, pp. 351–
357.

[21] P. R. Panda, “SystemC: A modeling platform supporting multiple design
abstractions,” in Proceedings of the 14th international symposium on
Systems synthesis, 2001, pp. 75–80.

[22] A. Rose, S. Swan, J. Pierce, and J.-M. Fernandez, “Transaction level
modeling in SystemC,” Open SystemC Initiative, vol. 1, no. 1.297, 2005.

[23] R. Nikhil, “Bluespec System Verilog: Efficient, correct RTL from high
level specifications,” in Proceedings. Second ACM and IEEE Interna-
tional Conference on Formal Methods and Models for Co-Design, 2004.
MEMOCODE’04. IEEE, 2004, pp. 69–70.

[24] A. C. Wright, “Modular SMT-based verification of rule-based hardware
designs,” Ph.D. dissertation, Massachusetts Institute of Technology,
2021.

[25] T. Bourgeat, C. Pit-Claudel, and A. Chlipala, “The essence of Bluespec:
A core language for rule-based hardware design,” in Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2020, pp. 243–257.

[26] J. Choi, M. Vijayaraghavan, B. Sherman, and A. Chlipala, “Kami:
A platform for high-level parametric hardware specification and its
modular verification,” 2017.

[27] M. Christensen, T. Sherwood, J. Balkind, and B. Hardekopf, “Wire sorts:
A language abstraction for safe hardware composition,” in Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, 2021, pp. 175–189.

[28] L. De Alfaro and T. A. Henzinger, “Interface automata,” ACM SIGSOFT
Software Engineering Notes, vol. 26, no. 5, pp. 109–120, 2001.

[29] L. d. Alfaro and T. A. Henzinger, “Interface theories for component-
based design,” in International Workshop on Embedded Software.
Springer, 2001, pp. 148–165.

[30] K. L. McMillan, “A compositional rule for hardware design refinement,”
in CAV, 1997, p. 24–35.

[31] D. Giannakopoulou, K. S. Namjoshi, and C. S. Pasareanu, “Composi-
tional reasoning,” in Handbook of Model Checking, 2018, pp. 345–383.

[32] R. Jhala and K. L. McMillan, “Microarchitecture verification by com-
positional model checking,” in CAV, 2001, p. 396–410.

[33] M. Talupur and M. R. Tuttle, “Going with the flow: Parameterized
verification using message flows,” in 2008 Formal Methods in Computer-
Aided Design, 2008, pp. 1–8.

[34] C.-T. Chou, P. K. Mannava, and S. Park, “A simple method for
parameterized verification of cache coherence protocols,” in FMCAD.
Springer Berlin Heidelberg, vol. 3312, pp. 382–398.

[35] K. S. Namjoshi and R. J. Trefler, “Parameterized compositional model
checking,” in Proceedings of the 22nd International Conference on Tools
and Algorithms for the Construction and Analysis of Systems - Volume
9636. Berlin, Heidelberg: Springer-Verlag, 2016, p. 589–606.

