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Abstract— Simulation-based testing has been the workhorse
of hardware implementation validation. For processors, tandem
simulation improves test and debug efficiency by cross-level sim-
ulating the Instruction Set Architecture (ISA) and RTL models,
and comparing architectural-state variables at the end of each in-
struction rather than at the end of the whole trace. Further, the
simulation may start with the ISA model and switch to the RTL
model at some point by transferring the values of the architectural
variables, thus speeding up the “warm-up” phase. However, thus
far tandem simulation has been limited to processor designs as
other SoC components lack high-level ISA models and thus the
notion of instructions. Even for processors, significant manual
effort is required in connecting the two models and constructing
the necessary controller to synchronize/check/swap between them.
This paper leverages the recently proposed Instruction-level Ab-
stractions (ILAs) for generalizing tandem simulation to accelera-
tors. Further, we use the refinement-map that is part of the ILA
verification methodology to automate the connection between the
ILA and the RTL simulation models for both processors and ac-
celerators. We provide seven case studies to demonstrate the prac-
tical applicability of our methodology.

I. INTRODUCTION

Modern System-on-Chips (SoCs) comprise CPUs/GPUs and
an increasing number of specialized hardware components
broadly referred to as accelerators. SoC design flow starts
with high-level design models [1,2] for the various components
which are then refined into low-level implementations, typi-
cally at the Register-Transfer Level (RTL). To ensure the cor-
rectness of a low-level implementation, its equivalence against
the high-level model is checked using formal verification or
simulation-based testing. While formal verification provides
guarantees of correctness, the state explosion problem hinders
its use on large designs in practice. Thus, simulation-based
testing is more generally applied to ensure the conformance of
a low-level implementation with a high-level specification.

In general, conformance testing refers to applying the same
sequence of test stimulus to the execution models (EM) of the
high-level specification and the low-level implementation and
determining compliance by comparing their traces at the end
of simulation time [3]. This can be inefficient, since the first
mismatch generally happens much earlier than the end of sim-
ulation and is often enough for debugging. To address this in-
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efficiency, an alternative approach – tandem simulation (or
RTL co-simulation with ISA simulator) – has been proposed
for processor designs [4, 5]. It combines the instruction-level
execution model (ILEM) based on the processor ISA, and the
RTL-based execution model (RTEM). The ILEM and RTEM
are combined into a cross-level execution model (CLEM), and
the simulation is executed instruction-by-instruction. At the
end of each instruction, the corresponding architectural vari-
ables (AV) are checked (AV-Check). This check ensures that
the instruction-level architectural variables (ILAVs) and the
corresponding RTL architectural variables (RTAVs) are equiv-
alent. Any deviation signifies a potential bug, which can be an-
alyzed with nearby instructions for debugging. The AV-Check
can also be invoked at specific intervals or checkpoints, to fur-
ther reduce the performance overhead of comparison. In addi-
tion, tandem simulation allows swapping in values from ILAVs
to RTAVs (AV-Swap), which can be leveraged to jump-start the
RTEM in the middle of an ILEM simulation. This can signif-
icantly reduce simulation time by leaving the “warm-up” part
of the test to only the ILEM.

While tandem simulation has been used for processors, other
SoC components, especially accelerators, are not thought of as
having instruction-level models, which limits the use of tandem
simulation to processor designs. Further, tandem simulation
thus far requires customization in that human input is needed
to establish the connection between the ILEM and RTEM to
apply the AV-Check and AV-Swap. This lack of automation
also limits practical application.

This paper addresses the above two gaps by leveraging the
recently proposed Instruction-Level Abstraction (ILA) to ex-
tend tandem simulation to accelerators, and by using a refine-
ment map that is specified by a user as part of the formal verifi-
cation methodology [6–8] to enable automation. The ILA has
been recently proposed for formally modeling accelerators [9].
Similar to the ISA for processors, an ILA models an accelera-
tor in terms of a set of architectural variables and “instructions”
that update the values of these variables. The ILA model can
be used to automatically generate an ILEM, which can then be
used to perform tandem simulation with an RTL implementa-
tion. Further, we automate the tandem simulation flow by using
the refinement map, which specifies: (i) the correspondence be-
tween ILAV and RTAV, i.e., what to compare for verification,
and (ii) the instruction start and finish conditions, i.e., when to
compare for verification. Thus, it provides the required infor-
mation for monitoring the RTL implementation and checking
its compliance against the ILA model.

Since the ILA generalizes the ISA, the proposed ILA-based
tandem simulation methodology applies uniformly to both ac-
celerators and processors. However, there are a couple of chal-
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Fig. 1. Three Scenarios for Tandem Simulation

lenges in extending and automating tandem simulation:
• Challenge 1 – Testbenches: The ILEM and RTEM require

testbenches in different forms – instruction-by-instruction
vs. cycle-by-cycle. Tailoring testbenches for different lev-
els takes extra effort and needs to be automated.

• Challenge 2 – AV-Swapping and micro-architectural vari-
ables: The implementation has more variables (micro-
architectural variables) than the ILA model. Thus, when
swapping AVs from the ILEM to the RTEM, these extra
(micro-architectural) variables need to be set properly.

We propose solutions to these challenges based on use of
ILAs and refinement maps. We demonstrate the strength of
our methodology on seven case studies, covering four hard-
ware accelerator designs (AES-block [10], AES-round [10],
GaussianBlur [11], FlexNLP [12]) and three RISC-V processor
designs (Pico [13], Piccolo [14], Rocket Core [15]). In partic-
ular, GaussianBlur, FlexNLP, Piccolo, and Rocket Core have
been integrated into various SoC designs in the broad com-
munity, demonstrating that our method is applicable to practi-
cal designs. We report the instruction-by-instruction checking
time and AV-Swapping time, which are both negligible relative
to the simulation time of the ILEM and RTEM. We also pro-
vide results for cases when RTL designs are buggy and also for
jump-starting, demonstrating the advantage of our methodol-
ogy in improving debugging and simulation speed.

To summarize, our paper makes the following contributions:
• We extend the tandem simulation methodology to accel-

erators using ILAs as high-level reference models.
• We describe a fully automated flow to apply tandem sim-

ulation to processors and accelerators, by leveraging a re-
finement map (often available in formal verification).

• We demonstrate the effectiveness of this methodology
through seven case studies, including several practical de-
signs at scale.

II. BACKGROUND

A. Tandem Simulation for Processors
We focus on the following three scenarios of tandem simu-

lation and demonstrate how they can be automatically applied.
Scenario 1: Instruction-by-instruction checking. Traditional
conformance testing applies checking (e.g. AV-Check) at the
end of the trace. In contrast, in this scenario AV-Check is ap-
plied at the end of each instruction, as shown in Figure 1.
Scenario 2: Checking at checkpoints. The AV-Check is done at
predefined points [16] (e.g. Figure 1 applies AV-Check for ev-
ery 1K instructions). This potentially reduces the performance
overhead in doing AV-Check at each instruction.
Scenario 3: Jump-starting implementation simulation. This is
useful when a long test stimulus contains both important and
unimportant sections (e.g., a warm-up phase in Figure 1). Sim-
ulating the unimportant sections only on the ILEM improves
the overall simulation speed.
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Fig. 2. AES Example

B. Instruction Level Abstraction (ILA)
Recently, the ILA was introduced as a uniform instruction-

level formal model for both processors and accelerators [9] 1

Similar to the ISA, the ILA for accelerators specifies a set of
instructions and AVs. (The ISA can be viewed as a special
case of an ILA.) Each instruction is a command at the in-
terface of the accelerator. For instance, accelerators that are
accessed through MMIO (Memory-Mapped Input/Output) are
controlled by loads/stores issued by the SW/FW (firmware) on
the host processor. The ILA model considers these load/stores
appearing at the interface as “instructions” for the accelerator.

Formally, an ILA model [9] is defined as a five-element tuple
〈S,W, S0, D,N〉, where S and W are the sets of state variables
and inputs, and S0 denotes initial values. The set of instruc-
tions I is defined by sets D and N , which represent the decode
functions (the triggered condition) and the state update func-
tions, respectively. An example fragment of an ILA model of
a cryptographic (AES) accelerator is shown in Figure 2a (this
figure is similar to an ILA example figure from [17], the AES
example is from [9]). The AVs include the encryption key, the
text length etc. The inputs are the MMIO interface signals.
Figure 2a shows the list of instructions and the definition of
the instruction SET KEY. As the state update function is a state
transition function for the architectural variables, this lends it-
self to direct translation to an ILEM for co-simulation.

The ILA allows for hierarchy to model complex instruc-
tions using child-instructions defined in a child-ILA (like
micro-instructions for complex processor instructions), e.g.,
the START ENCRYPT instruction in AES is described using
child-instructions for loading, encrypting, and storing the data.
C. Refinement Map

A key issue limiting automation of tandem simulation even
for processors is the lack of a general approach that connects

1This section provides an overview of the ILA modeling and verification
methodology and uses examples and figures for exposition here that are similar
to those in previous ILA papers (e.g. [9, 17]) with appropriate attribution.
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Fig. 3. Refinement Map (sketch)

the ILEM/RTEM and checks the corresponding AVs at the end
of instructions. We address this by leveraging the notion of a
refinement map, used in formal verification for processors [6,7]
and accelerators [8]. As sketched in Figure 3 (similar to a figure
in [17]), the ILA refinement map (template shown as black text;
refinement map info shown as red text) defines two main fields:
(i) Architectural Variable (AV) map: defines the mapping from
the ILAVs to the corresponding RTAVs. This provides the in-
formation about what to check, e.g., RTAV1 in Figure 3 corre-
sponds to ILAV1, and thus they are checked for equivalence.
(ii) Instruction map: defines the time or condition when each
instruction starts (e.g., decode function is true) and finishes
(e.g., after n cycles, or after a commit variable is true) in the
RTL implementation. This indicates the correspondence points
at which the RTAVs should be checked against the ILAVs.

The above two fields specify the key information needed for
verification – what to check and when to check. The refinement
map also uses the following optional fields as needed:
(iii) Interface map: provides the correspondence between the
ILA inputs and RTL inputs (when not identical).
(iv) Checkpoint map and (v) “cold start” map: are not part of
the original ILA refinement map [8] and have been added as
part of this work to support tandem simulation. Their use will
be discussed in §III.

Figure 2b (similar to a figure in [17]) shows an ex-
ample refinement map used for AES-ILA and AES-RTL
(partially derived from [8]). It shows that, for instance,
top.aes key.reg out from AES-Block implementation cor-
responds to AES-ILA’s key. The set key row shows that the
instruction starts when the corresponding decode function is
true and it finishes after executing one RTL cycle.

III. GENERALIZED TANDEM SIMULATION

In this section, we first introduce ILEM generation, followed
by an overview of the proposed methodology for automating
tandem simulation. Then we show how the specific challenges
discussed in §I are addressed.
A. ILAtor: Automatic Generation of an ILEM

The ILA model is written in a domain-specific language em-
bedded in C++, supported in the ILAng platform [8]. We have
developed a tool named ILAtor to automatically generate an
ILEM from an ILA model. (The name ILAtor is based on the
corresponding tool Verilator [18], which generates an RTEM
from a Verilog RTL model.) The ILEM of an ILA model is
similar to that of an executable ISA-level processor model. As
shown in the upper part of Figure 4a, the ILEM does the fol-
lowing: when a new input instruction is presented, it executes
the instruction whose decode function evaluates to true, i.e., its
state update function will be applied. The lower part shows the
execution model of child-ILAs, which is defined similar to that
for the ILA.
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kernel() {
// Below are for parent-ILA
if (𝑫𝟎)
instr0.update();

if (𝑫𝟏)
instr1.update();

...
// Below are for child-ILAs
do {
if (D0c) 
child_i0.update();

...    
} until (no executable 

child instr)
}

(b) Kernel template

Fig. 4. ILEM generated from ILA

The generated ILEM execution kernel is a single thread pro-
gram representing the ILA execution semantics. ILAtor syn-
thesizes the ILEM in both C and SystemC (as needed) so that
it can be easily integrated with RTEM for tandem simulation.
The inputs (W ) and AVs (S) of an ILA directly correspond to
the I/O and member variables of ILEM. For instructions, ILA-
tor uses the program template shown in Figure 4b to automat-
ically generate the execution kernel. It decodes and executes
instructions as defined in its ILA.
B. Methodology Overview

RTL executable model (RTEM)RTL Impl. 
Model

ILA Model

Refinement 
Map

ILAtor

Existing
Compiler*

Instruction level executable model 
(ILEM)

Tandem
Generator Instr.

Monitor
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Tool’s Input Tools Auto-Generated Executables

1-2 1-3 3

* Verilator for Verilog; g++ for systemC

tool developed in this paper

RTEM testbench

ILEM testbench

Cross-Level 
Executable model (CLEM)

n block involved in n-th scenario

Fig. 5. Tandem Simulation Flow

Figure 5 shows the flow of tandem simulation. The ILEM
is generated by the ILAtor, and the RTEM is generated by
an RTL simulator-generator (e.g. Verilator [18]). Our tandem
tool creates three additional blocks – an instruction monitor, an
AV-Comparator, and an AV-Converter – from the refinement
map. The instruction monitor uses the instruction map to de-
tect instruction boundaries (if any instruction starts or finishes)
in the RTEM. Depending on the scenario, it will invoke the
AV-Comparator (Scenario 1-2, Figure 1) for checking AVs, or
the AV-Converter (Scenario 3, Figure 1) for swapping AVs and
jump-start. Both of these are based on the AV map, which pro-
vides the correspondence between ILAVs and RTAVs.

Our methodology augments the refinement map with the
checkpoint map (as in Figure 3) to support the following three
types of checkpoints for Scenario 2. (1) Checkpoint period (P):
invokes checking for every P instructions, (2) Checkpoint se-
quence ([t1, t2, ...]): invokes checking at the tnth instruction,
and (3) Checkpoint condition (C): invokes checking when con-
dition C holds. According to the refinement map, the tandem
generator will augment the instruction monitor block to appro-
priately invoke the AV-Comparator.

A testbench (either for ILEM or RTEM, as in Figure 5) is
needed to drive the overall tandem simulation and we assume
that such a testbench is given.
C. Challenge 1: Single ILEM Testbench

Unlike processors which fetch instructions from memory,
accelerators receive commands/instructions at their interface.
Thus, for accelerators the ILEM and RTEM require testbenches
in different forms – for ILEM it is usually a sequence of in-
struction inputs, while for RTEM it is the cycle-by-cycle input



stimulus. The ILEM executes one instruction in a step, while
RTEM typically executes an instruction in multiple cycles –
during these cycles, the RTEM may block a following instruc-
tion if it is not ready to process it.

This tailoring of testbenches for different levels requires ad-
ditional effort and thus needs automation. In the case when
only the ILEM testbench is available, we automate this similar
to how processor instructions are simulated from instruction
memory. We add an auxiliary “program counter” to the accel-
erator ILEM and RTEM for accessing an external memory that
stores the test instruction sequence. For ILEM, the program
counter simply increments by one in each step. For RTEM, the
program counter is guarded by the “start condition” (from the
refinement map) of the current instruction it points to, i.e., the
current instruction will be executed only when the start con-
dition is true. Thus, both ILEM and RTEM run the same test
instructions from the ILEM testbench.

In the other direction, when only the RTEM testbench is
available, the tandem simulation of Scenarios 1 and 2 can be
directly automated since the RTEM is monitored for the in-
struction it executes. For Scenario 3, an ILEM testbench is
still needed, since the ILEM has to execute independently (e.g.,
prior to the jump-start) without monitoring the RTEM.

D. Challenge 2: Jump-Starting RTEM Simulation

Jump-starting requires the conversion of AVs: from RTL
to ILA, and from ILA to RTL. The former is straightforward,
since the AV map contains all the information about restoring
ILAVs from RTL variables. The other direction is more chal-
lenging because the ILA is an abstracted model, and there are
RTL micro-architectural variables that are not in the ILA, such
as internal counters and pipeline registers. Their values need to
be handled carefully.

We address this similar to processor tandem simulation [4,5]
by applying a “cold start” to set the RTL micro-architectural
variables to their reset values. We then use the AV map to
set the RTAVs with the corresponding ILAVs. We automate
this with the additional “cold start” map field of the refine-
ment map. In the “cold start” map (Figure 3), the pre-swap
cycle/sequence section specifies the input sequence for RTEM
reset; the swap cycle describes the holding time for swapped
RTAVs to account for designs where RTAVs take multiple cy-
cles to propagate to micro-architectural variables. As shown
in example (1) in the pre-swap cycle/sequence section, one can
assert reset for a couple of cycles. We also support specifying
a general sequence to RTEM input pins, as shown in example
(2) for reset and global start.

IV. CASE STUDIES

We applied the proposed tandem simulation methodology to
seven case studies, including four accelerator and three proces-
sor implementations. We evaluated the following three aspects
for all seven designs – (1) the performance (runtime) of each
simulated component (ILEM, RTEM, etc.), (2) the simulation
speedup with jump-starting, and (3) the improvement of bug
detection with instruction-by-instruction AV-Check.

We conducted the experiments on a 3.4 GHz 24-core Intel
Xeon server with 62 GB of RAM, running Ubuntu 16.04. We
used Verilator v4.1 [18] and SystemC library 2.3.3 [19] for Ver-
ilog and SystemC simulation. The open-source ILAng [8] was
used for ILA modeling, and we developed ILAtor and the tan-

dem generator for applying the automatic tandem simulation. 2

We also used the base refinement map (described in Json for-
mat) from ILAng, and added extra fields ((iv) and (v), colored
blue in Figure 3) to support tandem simulation.

The statistics of the ILA model, RTL implementation, re-
finement map and tandem simulation times are reported in Ta-
ble I. As the ILA is a higher-level model than RTL, the ILA
size (in lines of code, LoC) is smaller than RTL size in all de-
signs. We view the LoC as a rough measure of design com-
plexity or designer effort. Note also that the refinement map
size is much smaller than the RTL size, indicating that the hu-
man effort in developing a refinement map is much smaller.
GaussianBlur, Piccolo and Rocket core were originally gener-
ated from High-level Synthesis (HLS)/Hardware Generator –
Halide [11], Bluespec [20] and Chisel [21], respectively. We
also report the HLS/Generator code size for them.
A. Overview of Case Studies
1. Advanced Encryption Standard (AES): We consider two ac-
celerator implementations for AES [10], implemented in Ver-
ilog and C respectively, which implement a block-based and a
round-based algorithm, respectively. We use the same AES
ILA model [9] (introduced in §II) for both implementations
with individual refinement maps. This case demonstrates that
different refinement maps enable different RTEMs to be tan-
dem simulated with the same ILEM.
2. GaussianBlur: This case study is of a stencil image process-
ing accelerator for GaussianBlur (GB) [11], synthesized from
Halide description using HLS. It demonstrates that our method-
ology can handle HLS-synthesized implementations.
3. FlexNLP: FlexNLP [12] is designed for machine learn-
ing applications with RNN models with attention mechanisms.
The design is implemented in 18k lines (excluding the Men-
tor library code) of synthesizable SystemC. It demonstrates our
methodology’s strength in handling practical scale designs.
4. Pico, Piccolo and Rocket Core: We have applied our
methodology to three RISC-V processor implementations –
Pico, a multi-cycle design, and Piccolo and Rocket Core, both
pipelined designs. Similar to AES, this case also uses a single
RISC-V ILA [9], and uses three different refinement maps for
the three implementations.
B. Runtime Evaluation and Simulation Speedups

We applied the three tandem simulation scenarios in all
seven case studies and evaluated the simulation speed. We have
further broken down the simulation time for each tandem sim-
ulation component as presented in Table I . For designs with
an available testbench, such as FlexNLP, we use the given test-
bench to drive the simulation. Other designs are driven by ran-
domly generated test input sequences. Most designs success-
fully pass the tests except for AES-round, where we identified
a bug. The bug happens in an inclusive loop boundary which
should have been exclusive and causes encrypting an extra data
block in some tests. Our method detects the bug right after the
“start encryption” instruction which causes the state deviation,
in about 0.5s (after running about a third of the test sequence).
For this design, we used the bug-fixed version in the other ex-
periments measuring simulation time.

The simulation time for RTEM and ILEM is reported in the
first two columns of Table I. It is averaged over the number

2Source code is available on https://github.com/yuex1994/ASPDAC-
tandem



TABLE I
Case Studies – Statistics of ILA Models, RTL Designs, Refinement Maps and Simulation Time

Design Design Statistics Simulation Time Breakdown
ILA Size
(LoC)

# of Arch.
Variable bits

RTL Size
(LoC)

Ref-map
Size (LoC)

RTEM
(µs/instr)

ILEM
(µs/instr)

S1
(µs/instr)

S2-type1
(µs/instr)

S2-type2
(µs/instr)

S2-type3
(µs/instr)

S3
(µs)

AES (block) 236 298 1078 73 387 7.3 0.25 0.033 0.033 0.033 74.1
AES (round) 236 298 321 62 7.49 7.1 0.64 0.2 0.22 0.22 80.9
GaussionBlur 285 621 11375 (1325†) 147 3.3 1.2 0.19 0.066 0.063 0.068 14
FlexNLP 5807 5008 18338 459 2999 262 17.6 0.083 0.071 0.21 16694
Pico 584 1056 2014 208 0.97 0.29 0.084 0.024 0.019 0.02 0.4
Piccolo 584 1056 6063 (4122†) 223 4.5 0.3 0.26 0.022 0.019 0.019 789
Rocket Core 584 1056 13468 (3856†) 213 101 0.29 0.85 0.029 0.025 0.026 652
† Lines of Code for HLS/Hardware Generator.

of instructions for each test, thus making it a per-instruction
simulation time. As a higher-level model, the ILEM gener-
ally runs much faster than the RTEM, with the speedup ranging
from 3X (e.g., GB) to 300X (e.g., Rocket). One exception is
for AES-round – its C implementation is already very abstract,
thus leaving little room for ILEM speedup.

The third column (S1) demonstrates the runtime overhead of
Scenario 1, which includes the per-instruction time for moni-
toring the RTEM for the instruction boundary and checking the
RTAVs against ILAVs after every instruction. For practical de-
signs (e.g., FlexNLP, Rocket Core), this time is within 1% of
the RTEM simulation time.

The fourth to sixth columns (S2-type1, S2-type2, S2-type3)
show the per-instruction time for monitoring each type of
checkpoint, respectively. This can be regarded as the simu-
lation overhead for Scenario 2. As shown in Table I, these take
much less time (less than 10% of that for S1), demonstrating
speedups in comparison at check-points only, rather than after
every instruction.

The last column (S3) lists the AV-Swapping time from ILEM
to RTEM, which is the runtime overhead in Scenario 3. It
presents the one-time overhead of applying AV-Swapping, not
per-instruction. It varies significantly across the designs and is
determined roughly by the number of AVs and the “cold start”
length. Among all case studies, the swapping time is within
the time required for executing several to several hundred in-
structions on the RTEM. Thus, this overhead is negligible in
practical tests that have millions of instructions, as long as AV-
Swapping is not invoked very frequently.

C. Simulation Speedup with Jump-Starting

We conducted experiments to evaluate the effectiveness of
jump-starting in long input sequences. We divided each test
into two parts – a “warm-up” phase and an important phase.
We considered different fractions of the test inputs in the warm-
up and important phases. For example, we considered the first
5%, 15%, ... as warm-up, and the rest as important phase. Fig-
ure 6 presents the simulation speedup for different fractions, in
comparison to no jump-start.

Note that many designs have a significant speedup – more
than 2X with 80% jump-started instructions – and the speedup
increases as a higher fraction of instructions are jump-started.
The dashed line in the figure plots a theoretical maximum
speedup for a given fraction, which is computed by assuming
the ILEM simulation takes no time (and RTEM simulates dif-
ferent test inputs with a constant speed). For example, when
95% of the test inputs are jump-started, the simulation time is
at least simulating the remaining 5% on RTEM. Therefore, the
upper bound of the speedup is TRTEM

0.05∗TRTEM
= 20. As seen

in Figure 6, the speedup of AES-block, FlexNLP, and Rocket
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various design cases

is very close to the upper bound. They all achieve more than
10X speedup at the 95% fraction point. However, due to the
C implementation of the AES-round being very abstract, jump-
starting it achieves no speedup (speedup is less than one).
D. Improvement in Bug Detection

We also studied the improvement in bug detection time by
measuring the elapsed time to detect bugs using tandem sim-
ulation. As mentioned in §IV-B, most available designs are
bug-free. So, we set up the experiment by inserting a bug in
each design. Specifically, we consider three types of bugs: a
“condition bug” changes a value/condition in a conditional (an
if-then-else or case) statement; a “data bug” changes a value
in a computation; an “expression bug” changes a logic opera-
tor (e.g., from AND/OR to XOR). We inserted a bug of each
type separately, leading to three buggy variations per design.
Further, there are tens/hundreds of candidate locations for bug
insertion – we randomly picked one for our experiments. For
AES-round, the bug identified in §IV-B belongs to the “con-
ditional bug” category and is also used here. The test inputs
are randomly generated (as in §IV-B), and are long enough to
detect the bugs.

We evaluated two debug strategies: 1) traditional confor-
mance testing – which runs the test to the end and then com-
pares the ILEM and RTEM results, and 2) tandem simulation



– which runs the test instruction-by-instruction and applies the
AV-Check at the end of each instruction. We applied these two
strategies to each bug variant of the designs and measured their
bug detection time. We normalized the bug detection time of
the second strategy by that of the first strategy and plotted it in
Figure 7. (The absolute simulation time for the first strategy
ranges from 1-15 seconds for different design variants.) The
normalized numbers here demonstrate that tandem simulation
often detects the bug earlier than finishing the test in confor-
mance testing. In many cases, it finds the bugs in less than
10% of the full test time, and in most cases in less than 40%.
An outlier is a data bug in FlexNLP, where the buggy data is
used only in a very late stage of the test program.
E. Summary

In summary, our experimental results demonstrate that:
• Tandem simulation for all three proposed scenarios can

be effectively automated using the ILA model and refine-
ment map from the ILA verification methodology for pro-
cessors and accelerators.

• The overhead of the extra components introduced by
our automatic tandem simulation methodology (i.e., AV-
Comparator, Instruction Monitor, and AV-Converter) is
negligible compared to RTEM simulation time.

• There is a significant simulation speedup by jump-starting
unimportant/“warm-up” phases.

• The instruction-by-instruction checking detects bugs ear-
lier than run-to-the-end methods.

V. RELATED WORK

The idea of tandem simulation was proposed in Blue-
Spec’s toolchain [4] for various RISC-V processor implemen-
tations [14]. Similarly, the BlackParrot project integrated the
Dromajo RISC-V ISA co-simulator [22] with their RTL simu-
lation, effectively providing tandem simulation capability [5].
Earlier designs, such as the IBM Power processors, were also
validated using instruction-by-instruction checking [23]. These
methods are limited to processor designs, and are manually
done with no systematic methodology. In contrast, our pro-
posed method leverages the ILA model for extending tandem
simulation to accelerators and leverages the refinement map for
automation.

Past work has also explored the idea of co-simulating cross-
level models, especially between the transaction-level model
(TLM) and RTL [24, 25]. These techniques utilize a transactor
(either manually or automatically generated) to refine the exist-
ing TLM test inputs or functional assertions into RTL simula-
tion, where the RTL can be verified by checking the test output
or triggered assertions. Unlike these works, our tandem simula-
tion approach is based on the RTL model being a refinement of
the ILA model, and thus focuses on the architectural state vari-
ables and checks them at the granularity of instructions. This
provides the key benefit of bug detection and early termination,
while the TLM/RTL co-simulation generally requires finishing
the whole test before checking. It also enables jump-starting
through AV-Swapping, which is a harder task for TLM-to-RTL
cross-level simulation.

VI. CONCLUSIONS

In this paper, we generalize the notion of instruction-level
and RTL tandem simulation to include accelerators in addition
to processors. We propose an automatic flow for tandem simu-
lation by leveraging the refinement map, which is used by de-

signers for formal verification. We discussed the challenges
in this generalization and proposed a methodology that uses
the ILA model for automatically generating an instruction-level
execution model, and adapts its associated refinement map for
automating the comparison checks and jump-starting in tan-
dem simulation. We applied this methodology to seven de-
sign case studies, including several processor and accelerator
designs. The evaluation results demonstrate the effectiveness
of the proposed tandem simulation methodology in improving
simulation speed-up and earlier bug detection.
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